K-moduli space of del pezzo surface pairs

Joint work with Long Pan and Haoyu Wu

Fei Si

BICMR, Peking university

 K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that Ric(ω) = ω.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that Ric(ω) = ω.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that Ric(ω) = ω.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-stability. It is proved by Chen-Donaldson-Sun and Tian in 2015.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that Ric(ω) = ω.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-stability. It is proved by Chen-Donaldson-Sun and Tian in 2015.
- In 2017, Chi Li and K. Fujita discover the valuative criterion for K-stability, where many birational geometric tools can apply.

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that Ric(ω) = ω.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-stability. It is proved by Chen-Donaldson-Sun and Tian in 2015.
- In 2017, Chi Li and K. Fujita discover the valuative criterion for K-stability, where many birational geometric tools can apply.
- In the recent years, Xu's school developed algebraic K-stability theory and use the theory to construct good moduli spaces for K-polystable (log) Fano varieties.

K-stability: definition

Recall a log Fano variety (X, D) consists of a normal projective variety X and an effective \mathbb{Q} -divisor D such that $-(K_X + D)$ is ample \mathbb{Q} -Cartier divisor.

For example, $(X = \mathbb{P}^3, cS_4)$ for $c \in (0, 1) \cap \mathbb{Q}$. If D = 0, log Fano = Fano.

K-stability: definition

Recall a log Fano variety (X, D) consists of a normal projective variety X and an effective \mathbb{Q} -divisor D such that $-(K_X + D)$ is ample \mathbb{Q} -Cartier divisor.

For example, $(X = \mathbb{P}^3, cS_4)$ for $c \in (0, 1) \cap \mathbb{Q}$. If D = 0, log Fano = Fano.

Definition (Fujita-Li)

A log Fano variety (X, D) is K-semistable if

$$FL_{(X,D)}(E) := A_{(X,D)}(E) - S_{(X,D)}(E) \ge 0$$

for any prime divisor $E \subset Y \xrightarrow{\pi} X$. Here

$$A_{(X,D)}(E) := 1 + \operatorname{ord}_{E}(K_{Y} - \pi^{*}(K_{X} + D))$$

$$S_{(X,D)}(E) := \frac{1}{(-K_{X} - D)^{n}} \int_{0}^{\infty} \operatorname{vol}(-\pi^{*}(K_{X} + D) - tE) dt$$

Claim: $\mathbb{F}_1 \cong Bl_p \mathbb{P}^2$ is K-unstable.

Let E ⊂ Bl_p P² be the exceptional divisor of blowups µ : Bl_p P² → P², then A_{Bl_p} (E) = 1 + 0 = 1.

- Let $E \subset Bl_p \mathbb{P}^2$ be the exceptional divisor of blowups $\mu : Bl_p \mathbb{P}^2 \to \mathbb{P}^2$, then $A_{Bl_p \mathbb{P}^2}(E) = 1 + 0 = 1$.
- Recall Zariski decomposition on normal projective surface X: let D be pesudo-effective Q-divisor, then there is a unique decomposition D = P + N where $P, N \ge 0$ Q-divisors such that $P.N_i = 0$ for each component of N, P is nef and the intersection matrix of components of N is negative or N = 0. In particular, $vol(D) = P^2$.

- Let $E \subset Bl_p \mathbb{P}^2$ be the exceptional divisor of blowups $\mu : Bl_p \mathbb{P}^2 \to \mathbb{P}^2$, then $A_{Bl_p \mathbb{P}^2}(E) = 1 + 0 = 1$.
- Recall Zariski decomposition on normal projective surface X: let D be pesudo-effective Q-divisor, then there is a unique decomposition D = P + N where $P, N \ge 0$ Q-divisors such that $P.N_i = 0$ for each component of N, P is nef and the intersection matrix of components of N is negative or N = 0. In particular, $vol(D) = P^2$.

•
$$-K_{Bl_p\mathbb{P}^2} - tE = \mu^* \mathcal{O}(3) - (t+1)E$$
 has Zariski decomposition
 $P_t = \mu^* \mathcal{O}(3) - (t+1)E$ for $0 \le t \le 2$.

- Let E ⊂ Bl_p P² be the exceptional divisor of blowups μ : Bl_p P² → P², then A_{Bl_p} P²(E) = 1 + 0 = 1.
- Recall Zariski decomposition on normal projective surface X: let D be pesudo-effective Q-divisor, then there is a unique decomposition D = P + N where $P, N \ge 0$ Q-divisors such that $P.N_i = 0$ for each component of N, P is nef and the intersection matrix of components of N is negative or N = 0. In particular, $vol(D) = P^2$.

•
$$-K_{Bl_p\mathbb{P}^2} - tE = \mu^*\mathcal{O}(3) - (t+1)E$$
 has Zariski decomposition
 $P_t = \mu^*\mathcal{O}(3) - (t+1)E$ for $0 \le t \le 2$. Then

$$S_{Bl_p\mathbb{P}^2}(E) = rac{1}{8}\int_0^2 (9-(t+1)^2)dt = rac{7}{6}$$

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

() Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

- **(**) Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable ?
- ② (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

- **1** Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable ?
- ② (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable ?
- Selabi's Problem: Can we classify K-stable Fano 3 -folds ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

- **(**) Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1}$ K-stable ?
- ② (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable ?
- Selabi's Problem: Can we classify K-stable Fano 3 -folds ?

At present, it is an active research direction to check K-stablity of log Fano varieties. The main two approaches

- Equivariant criterion and Abban-Zhuang's adjunction of stability threshold.
- Moduli method.

 Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface X_d ⊂ ℙⁿ of degree d = n is K-stable.

- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_d \subset \mathbb{P}^n$ of degree d = n is K-stable.
- Moduli methods:
 - Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space |O_{Pⁿ}(3)|∥ PGL(n + 1).

- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_d \subset \mathbb{P}^n$ of degree d = n is K-stable.
- Moduli methods:
 - Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space |O_{Pⁿ}(3)|∥ PGL(n + 1).
 - Solution Scher-DeVleming-Liu (2021) proved K-moduli space of $(\mathbb{P}^1 \times \mathbb{P}^1, cC)$ is isomorphic to VGIT

$$\mathbb{P}\mathcal{E}/\!\!/_{L_t} PGL(4), \ L_t = \mathcal{O}_{\mathbb{P}\mathcal{E}}(1) + p^* \mathcal{O}_{\mathbb{P}^9}(t)$$

where $p : \mathbb{P}\mathcal{E} \to |\mathcal{O}_{\mathbb{P}^3}(2)| = \mathbb{P}^9$ is a projective bundle parametrizing (2,4) complete intersections in \mathbb{P}^3 .

- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_d \subset \mathbb{P}^n$ of degree d = n is K-stable.
- Moduli methods:
 - Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space |O_{Pⁿ}(3)|∥ PGL(n + 1).
 - Solution Scher-DeVleming-Liu (2021) proved K-moduli space of $(\mathbb{P}^1 \times \mathbb{P}^1, cC)$ is isomorphic to VGIT

$$\mathbb{P}\mathcal{E}/\!\!/_{L_t}PGL(4), \ L_t = \mathcal{O}_{\mathbb{P}\mathcal{E}}(1) + p^*\mathcal{O}_{\mathbb{P}^9}(t)$$

where $p : \mathbb{P}\mathcal{E} \to |\mathcal{O}_{\mathbb{P}^3}(2)| = \mathbb{P}^9$ is a projective bundle parametrizing (2,4) complete intersections in \mathbb{P}^3 .

Scher-DeVleming-Liu (2022) gives full wall-crossing of K-moduli space for (ℙ³, cS₄), based on the work of Laza-O'Grady's work on moduli space of quartic K3 surfaces.

Equivariant criterion

Theorem (Zhuang)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Equivariant criterion

Theorem (Zhuang)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Assume effective torus action $T = (\mathbb{G}_m)^{\dim X - 1}$ on (X, D). Equivalently, $(\mathbb{C}(X))^T = \mathbb{C}(\mathbb{P}^1)$ and there is $X \dashrightarrow \mathbb{P}^1$.

Equivariant criterion

Theorem (Zhuang)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Assume effective torus action $T = (\mathbb{G}_m)^{\dim X - 1}$ on (X, D). Equivalently, $(\mathbb{C}(X))^T = \mathbb{C}(\mathbb{P}^1)$ and there is $X \dashrightarrow \mathbb{P}^1$.

Theorem (Zhuang, Ilten-Suss)

Let (X, D) be a 2-dimensional log Fano with an effective \mathbb{G}_m -action λ . Then (X, D) is K-polystable if and only if the followings hold:

- $FL_{(X,D)}(F) > 0$ for all vertical λ -invariant prime divisors F on X;
- **2** $FL_{(X,D)}(F) = 0$ for all horizontal λ -invariant prime divisors F on X;
- So $FL_{(X,D)}(v) = 0$ for the valuation v induced by the 1-PS λ .

 $C = H_x + H_y + 4H_z \sim -2K_{Bl_p\mathbb{P}^2}$ where H_x the proper transform of the line $\{x = 0\} \subset \mathbb{P}^2$.

 $C = H_x + H_y + 4H_z \sim -2K_{Bl_p\mathbb{P}^2}$ where H_x the proper transform of the line $\{x = 0\} \subset \mathbb{P}^2$.

Proposition

 $(Bl_p\mathbb{P}^2, cC)$ is K-semistable if and only if $c = \frac{1}{14}$

 $C = H_x + H_y + 4H_z \sim -2K_{Bl_p\mathbb{P}^2}$ where H_x the proper transform of the line $\{x = 0\} \subset \mathbb{P}^2$.

Proposition

$$({\it Bl}_{
ho}\mathbb{P}^2, cC)$$
 is K-semistable if and only if $c=rac{1}{14}$

Proof.

•
$$A_{(Bl_p\mathbb{P}^2,cC)}(H_z) = 1 - 4c \ge S_{(Bl_p\mathbb{P}^2,cC)}(H_z) = \frac{5}{6}(1-2c)$$
 implies $c \le \frac{1}{14}$
• $A_{(Bl_p\mathbb{P}^2,cC)}(H_x) = 1 - c \ge S_{(Bl_p\mathbb{P}^2,cC)}(H_x) = \frac{13}{12}(1-2c)$ implies $c \ge \frac{1}{14}$

 $C = H_x + H_y + 4H_z \sim -2K_{Bl_p\mathbb{P}^2}$ where H_x the proper transform of the line $\{x = 0\} \subset \mathbb{P}^2$.

Proposition

$$({\it Bl}_{
ho}\mathbb{P}^2, cC)$$
 is K-semistable if and only if $c=rac{1}{14}$

Proof.

•
$$A_{(Bl_p \mathbb{P}^2, cC)}(H_z) = 1 - 4c \ge S_{(Bl_p \mathbb{P}^2, cC)}(H_z) = \frac{5}{6}(1 - 2c)$$
 implies $c \le \frac{1}{14}$

•
$$A_{(Bl_p \mathbb{P}^2, cC)}(H_x) = 1 - c \ge S_{(Bl_p \mathbb{P}^2, cC)}(H_x) = \frac{13}{12}(1 - 2c)$$
 implies $c \ge \frac{1}{14}$

 The pair (Bl_pℙ², C) is toric. Computation of barycenters will show (Bl_pℙ², ¹/₁₄C) is K-semistable. Or one can use a G_m-equivariant criterion.

K-moduli spaces of log Fano varieties

• Due to many people's work (Jiang, Xu, Blum-Liu-Xu, Blum-Xu, Liu-Xu-Zhuang, Xu-Zhunag etc), there is a proper Artin stack of finite type $\mathfrak{P}^{K}(c)$ parametrizing K-semistable *n*-dimensional log Fano varieties (X, cD) with fixed volume $v = (-K_X)^n$ where $D \sim -2K_X$ and $c \in (0, \frac{1}{2}) \cap \mathbb{Q}$.

K-moduli spaces of log Fano varieties

- Due to many people's work (Jiang, Xu, Blum-Liu-Xu, Blum-Xu, Liu-Xu-Zhuang, Xu-Zhunag etc), there is a proper Artin stack of finite type $\mathfrak{P}^{K}(c)$ parametrizing K-semistable *n*-dimensional log Fano varieties (X, cD) with fixed volume $v = (-K_X)^n$ where $D \sim -2K_X$ and $c \in (0, \frac{1}{2}) \cap \mathbb{Q}$.
- Moreover, $\mathfrak{P}^{K}(c)$ has good moduli space

$$\mathfrak{P}^{K}(c)
ightarrow \mathrm{P}^{K}(c)$$

in the sense of J. Alper, which locally looks like

$$[Spec(R)/G] \rightarrow Spec(R^G)$$

where G is a reductive algebraic group.

K-moduli wall-crossing

Theorem (Ascher-DeVleming-Liu- 2019)

There are finitely many rational numbers (i.e., walls) $0 < w_1 < \cdots < w_m < \frac{1}{2}$ such that

$$\overline{P}(c)^K \cong \overline{P}(c')^K$$
 for any $w_i < c, c' < w_{i+1}$ and any $1 \le i \le m-1.$

Denote $\overline{P}^{K}(w_{i}, w_{i+1}) := \overline{P}^{K}(c)$ for some $c \in (w_{i}, w_{i+1})$, then at each wall w_{i} , there is a flip (or divisorial contraction)

$$\overline{P}^{K}(w_{i-1}, w_{i}) \longrightarrow \overline{P}^{K}(w_{i}) \longleftarrow \overline{P}^{K}(w_{i}, w_{i+1})$$

which fits into a local VGIT.

K-moduli of del pezzo pair of degree 8

 Let P^K(c) be the K-moduli space of 2-dimensional log Fano varieties with (−K_X)² = 8 and a general member is (Bl_pP², cC). K-moduli of del pezzo pair of degree 8

- Let P^K(c) be the K-moduli space of 2-dimensional log Fano varieties with (−K_X)² = 8 and a general member is (Bl_pP², cC).
- $C \in |-2K_{Bl_p\mathbb{P}^2}|$ can be viewed as $C = \pi^*D 2E$ where $D \subset \mathbb{P}^2$ $D = \{z^4f_2(x, y) + z^3f_3(x, y) + \dots + f_6(x, y) = 0\}.$

K-moduli of del pezzo pair of degree 8

 Let P^K(c) be the K-moduli space of 2-dimensional log Fano varieties with (−K_X)² = 8 and a general member is (Bl_pP², cC).

• $C \in |-2K_{Bl_p\mathbb{P}^2}|$ can be viewed as $C = \pi^*D - 2E$ where $D \subset \mathbb{P}^2$ $D = \{z^4f_2(x, y) + z^3f_3(x, y) + \dots + f_6(x, y) = 0\}.$

Assume $f_2(x, y)$ has rank 2, then curve D has the form

$$az^4xy + z^3\widetilde{f}_3(x,y) + z^2f_4(x,y) + zf_5(x,y) + f_6(x,y) = 0$$

Let $\mathbb{P}V \cong \mathbb{P}^{20}$ be the parameter space of such D and there is $T = (\mathbb{C}^*)^2$ -action on $\mathbb{P}V$ and define GIT space $\mathbb{P}V/\!\!/T$.

Moduli space

Let X = X_C → Bl_p P² be the double cover branched along smooth curve C ~ −2K_{Bl_pP²}, then X is a K3 surface with anti-symplectic involution τ : X → X. Then NS(X) contains

$$\left(\begin{array}{cc} 0 & 2 \\ 2 & -2 \end{array}\right)$$

Its period domain \mathcal{D} is determined transcendental lattice $U^2 \oplus E_8 \oplus E_7 \oplus A_1$.

Moduli space

Let X = X_C → Bl_p P² be the double cover branched along smooth curve C ~ −2K_{Bl_pP²}, then X is a K3 surface with anti-symplectic involution τ : X → X. Then NS(X) contains

$$\left(\begin{array}{cc} 0 & 2 \\ 2 & -2 \end{array}\right)$$

Its period domain \mathcal{D} is determined transcendental lattice $U^2 \oplus E_8 \oplus E_7 \oplus A_1$.

• Via a period point of K3 surfaces, there is biratonal map

$$\mathbb{P}^{K}(c) \dashrightarrow \mathcal{F} = \Gamma \setminus \mathcal{D}, \; [(Bl_{p}\mathbb{P}^{2}, C)] \mapsto H^{2,0}(S_{C}) \mod \Gamma$$

if $P^{K}(c)$ is nonempty.

Two divisors \mathcal{F}

Hyperelliptic divisor H_h on F: X → Bl_p P² branched along a general curve C ∈ | -2K_{Bl_pP²} tangent the (-1)-curve E.

$$NS(X) = \begin{pmatrix} L & E_1 & E_2 \\ \hline L & 2 & 0 & 0 \\ E_1 & 0 & -2 & 1 \\ E_2 & 0 & 1 & -2 \end{pmatrix}$$

Two divisors ${\cal F}$

Hyperelliptic divisor H_h on F: X → Bl_p P² branched along a general curve C ∈ | -2K_{Bl_pP²} tangent the (-1)-curve E.

$$NS(X) = \begin{pmatrix} L & E_1 & E_2 \\ L & 2 & 0 & 0 \\ E_1 & 0 & -2 & 1 \\ E_2 & 0 & 1 & -2 \end{pmatrix}$$

• Unigonal divisor H_u on $\mathcal{F}: X \xrightarrow{2:1} Bl_p \widetilde{\mathbb{P}(1,1,4)} \to Bl_p \mathbb{P}(1,1,4)$.

$$NS(X) = \begin{pmatrix} E' & F' & H'_y \\ \hline E' & -2 & 0 & 2 \\ F' & 0 & -2 & 1 \\ H'_y & 2 & 1 & -2 \end{pmatrix}$$

Theorem A (Pan-Si-Wu,2023)

• The walls for K-moduli space $P^{K}(c)$ are

$$W_{h} = \{ \frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7} \}$$
$$W_{u} = \{ \frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118} \}$$

Theorem A (Pan-Si-Wu,2023)

• The walls for K-moduli space $P^{K}(c)$ are

$$W_{h} = \{ \frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7} \}$$
$$W_{u} = \{ \frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118} \}$$

3 If $c \in (0, \frac{1}{14})$, $P^{K}(c)$ is empty. If $c \in (\frac{1}{14}, \frac{5}{58})$, $P^{K}(c) \cong \mathbb{P}V/\!\!/ T$.

Theorem A (Pan-Si-Wu,2023)

• The walls for K-moduli space $P^{K}(c)$ are

$$W_{h} = \{ \frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7} \}$$
$$W_{u} = \{ \frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118} \}$$

③ If $c \in (0, \frac{1}{14})$, $P^{K}(c)$ is empty. If $c \in (\frac{1}{14}, \frac{5}{58})$, $P^{K}(c) \cong \mathbb{P}V/\!\!/ T$.

3 There are two divisorial contraction morphisms $P^{K}(w + \epsilon) \rightarrow P^{K}(w)$ at $w = \frac{5}{58}$ and $w = \frac{29}{106}$. The exceptional divisors $E_{w}^{+} \subset P^{K}(w + \epsilon)$ is birational to hyperelliptic divisor $H_{h}($ resp. unigonal divisor H_{u}).

Table for K-wall

wall	curve B on \mathbb{P}^2	weight	curve singularity at p	
$\frac{1}{14}$	$x^4 z y = 0$	(1,0,0)	A1	
$\frac{5}{58}$	$x^4z^2 + x^3y^3 = 0$	(0,2,3)	A ₂	
$\frac{1}{10}$	$x^4 z^2 + x^3 z y^2 + a \cdot x^2 y^4 = 0$	(0,1,2)	A ₃	
$\frac{7}{62}$	$x^4z^2 + xy^5 = 0$	(0,2,5)	A ₄	
$\frac{1}{8}$	$x^4 z^2 + x^2 z y^3 + a \cdot y^6 = 0,$	(0,1,3)	A_5 tangent to L_z	
	$x^3f_3(z,y)=0$	(0,1,1)	D4	
<u>5</u> 34	$x^4z^2 + xzy^4 = 0$	(0,1,4)	A7 with a line	
	$x^3z^2y + x^2y^4 = 0$	(0,2,3)	D5	
$\frac{1}{6}$	$x^4z^2 + zy^5 = 0$	(0,1,5)	A ₉ with a line	
	$x^{3}z^{2}y + x^{2}zy^{3} + a \cdot xy^{5} = 0$	(0,1,2)	D ₆	

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_1 = \textit{Bl}_{[1,0,0]} \mathbb{P}^2$

Table for K-walls

wall	curve B on \mathbb{P}^2	weight	curve singularity at p	
7	$x^3z^2y + y^6 = 0$	(0,2,5)	D_7 tangent to L_z	
38	$x^3 z^3 + x^2 y^4 = 0$	(0,3,4)	E ₆	
$\frac{1}{5}$	$x^3z^2y + xzy^4 = 0$	(0,1,3)	D_8 with L_z	
5	$x^3z^2y + zy^5 = 0$	(0,1,4)	D_{10} with L_z	
22	$x^{3}z^{3} + x^{2}zy^{3} = 0$	(0,2,3)	E ₇	
$\frac{2}{7}$	$x^3z^3 + xy^5 = 0$	(0,3,5)	E ₈	

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_1 = Bl_{[1,0,0]}\mathbb{P}^2$

Table for K-walls

wall	curve B on \mathbb{P}^2	weight	curve singularity at p	
7	$x^3z^2y + y^6 = 0$	(0,2,5)	D_7 tangent to L_z	
38	$x^3 z^3 + x^2 y^4 = 0$	(0,3,4)	E ₆	
$\frac{1}{5}$	$x^3z^2y + xzy^4 = 0$	(0,1,3)	D_8 with L_z	
5	$x^3z^2y + zy^5 = 0$	(0,1,4)	D_{10} with L_z	
22	$x^{3}z^{3} + x^{2}zy^{3} = 0$	(0,2,3)	E ₇	
$\frac{2}{7}$	$x^3z^3 + xy^5 = 0$	(0,3,5)	E ₈	

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_1 = Bl_{[1,0,0]}\mathbb{P}^2$

wall	curve B on $\mathbb{P}(1,1,4)$	weight	(a, b, m)
$\frac{29}{106}$	$z^3 + z^2 x^4 = 0$	(1,0,4)	(0, 1, 0)
$\frac{31}{110}$	$z^3 + zyx^7 = 0$	(2,0,7)	(1, 1, 1)
$\frac{2}{7}$	$z^3 + y^2 x^{10} = 0$	(3,0,10)	(2,1,2)
$\frac{35}{118}$	$z^3 + zy^2x^6 + y^3x^9 = 0$	(1,0,3)	(1,0,1)

Table: K-moduli walls from index 2 del Pezzo $Bl_{[1,0,0]}\mathbb{P}(1,1,4)$

Define the Hasset-Keel-Looijenga (HKL) model for ${\cal F}$

$$\mathcal{F}(s) := \operatorname{Proj} \left(\bigoplus_{m} H^{0}(\mathcal{F}, m(\lambda + sH_{h} + 25sH_{u})) \right)$$

By Baily-Borel's work, $\mathcal{F}(0) = \mathcal{F}^*$ is Baily-Borel's compactification for \mathcal{F} with boundaries $\mathcal{F}^* - \mathcal{F}$ consisting of modular curves.

Define the Hasset-Keel-Looijenga (HKL) model for ${\cal F}$

$$\mathcal{F}(s) := \operatorname{Proj} \left(\bigoplus_{m} H^{0}(\mathcal{F}, m(\lambda + sH_{h} + 25sH_{u})) \right)$$

By Baily-Borel's work, $\mathcal{F}(0) = \mathcal{F}^*$ is Baily-Borel's compactification for \mathcal{F} with boundaries $\mathcal{F}^* - \mathcal{F}$ consisting of modular curves.

Theorem B (Pan-Si-Wu,2023)

There is natural isomorphism $P^{K}(c) \cong \mathcal{F}(s)$ induced by the period map under the transformation

$$s=s(c)=\frac{1-2c}{56c-4}$$

where $\frac{1}{14} < c < \frac{1}{2}$. In particular, $P^{K}(c)$ will interpolates the GIT space $\mathbb{P}V/\!\!/T$ and Baily-Borel compactification \mathcal{F}^* . The walls are $w = \frac{1}{n}$ and

 $n \in \{1, 2, 3, 4, 6, 8, 10, 12, 16, 25, 27, 28, 31\}$

Sketch of proof of Theorem A

Step1: To determine K-semistable degeneration. By using some classification results of index ≤ 2 del pezzo surface and normalised volume comparison due to Chi Li, Li-Liu, we can show each (X, cC) ∈ P^K(c), then X is either Bl_pP² or Bl_pP(1, 1, 4).

Sketch of proof of Theorem A

- Step1: To determine K-semistable degeneration. By using some classification results of index ≤ 2 del pezzo surface and normalised volume comparison due to Chi Li, Li-Liu, we can show each (X, cC) ∈ P^K(c), then X is either Bl_pP² or Bl_pP(1, 1, 4).
- Step2: Local VGIT structure of K-moduli implies if (X, cC) ∈ P^K(w) admits 1-PS λ and thus FL(E_λ) = 0 where E_λ is exceptional divisor of certain weighted blowup determined by λ. e.g, X = Bl_[1,0,0] P² and for some λ = [0, m₁, m₂] on X,

$$A_{(X,cC)}(E_{\lambda}) = a + b - mc, \quad S_{(X,cC)}(E_{\lambda}) = \frac{14a + 13b}{12}(1 - 2c)$$

Then $A_{(X,cC)}(E_{\lambda}) = S_{(X,cC)}(E_{\lambda})$ will all potential walls.

• Step3: To determine the 1st walls and then keep track of wall crossing at all centers for each walls.

Step3: To determine the 1st walls and then keep track of wall crossing at all centers for each walls.
 Following the arguments of Liu-Xu, show for ¹/₁₄ < c < ¹/₁₄ + ε and any K-degeneration (X₀, cC₀) of (Bl_p ℙ², cC), X₀ is still Bl_p ℙ², then

$$\mathfrak{P}^{\mathsf{K}} \hookrightarrow \mathbb{P} \mathsf{V}.$$

Then explicit wall-crossing are followed by analysis of local VGIT at each wall $w \in W_u \cup W_h$.

Some remarks:

• The explicit wall-crossing from $\mathbb{P}V/\!\!/T$ to \mathcal{F}^* will be useful to calculate the topological invariants and intersection theory on the moduli space \mathcal{F} .

Some remarks:

- The explicit wall-crossing from ℙV // T to F* will be useful to calculate the topological invariants and intersection theory on the moduli space F.
- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).

Some remarks:

- The explicit wall-crossing from ℙV // T to F* will be useful to calculate the topological invariants and intersection theory on the moduli space F.
- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).
- It should be interesting to look at the behavior of $c > \frac{1}{2}$ and $c = \frac{1}{2}$. For $c > \frac{1}{2}$, by Alexeev-Engel and Alexeev-Engel-Han's work, the KSBA moduli space compactifying pairs $(Bl_p\mathbb{P}^2, cC)$ and their slc degeneration has a natural normalization— Toroidal compactification of \mathcal{F} .

For $c = \frac{1}{2}$, it is expected to have a moduli theory for log CY to connect wall crossing from K-moduli to KSBA moduli.

Thank you for attention !