K-moduli space of del pezzo surface pairs Joint work with Long Pan and Haoyu Wu

Fei Si
BICMR, Peking university

K-stability: some history

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $\operatorname{Ric}(\omega)=\omega$.

K-stability: some history

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $\operatorname{Ric}(\omega)=\omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.

K-stability: some history

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $\operatorname{Ric}(\omega)=\omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-stability. It is proved by Chen-Donaldson-Sun and Tian in 2015.

K-stability: some history

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $\operatorname{Ric}(\omega)=\omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-stability. It is proved by Chen-Donaldson-Sun and Tian in 2015.
- In 2017, Chi Li and K. Fujita discover the valuative criterion for K-stability, where many birational geometric tools can apply.

K-stability: some history

- K-stability is first introduced by Tian (1997) as an obstruction to the existence of Kähler-Einstein metric on Fano manifold, i.e., Kähler metric ω on X such that $\operatorname{Ric}(\omega)=\omega$.
- Later Donaldson (2002) reformulate the K-stability in algebraic-geometric way from the perspective of Mumford's GIT.
- The famous Yau-Tian-Donaldson conjecture asserts existence of Kähler-Einstein metric is equivalent K-stability. It is proved by Chen-Donaldson-Sun and Tian in 2015.
- In 2017, Chi Li and K. Fujita discover the valuative criterion for K-stability, where many birational geometric tools can apply.
- In the recent years, Xu's school developed algebraic K-stability theory and use the theory to construct good moduli spaces for K-polystable (\log) Fano varieties.

K-stability: definition

Recall a log Fano variety (X, D) consists of a normal projective variety X and an effective \mathbb{Q}-divisor D such that $-\left(K_{X}+D\right)$ is ample \mathbb{Q}-Cartier divisor.
For example, $\left(X=\mathbb{P}^{3}, c S_{4}\right)$ for $c \in(0,1) \cap \mathbb{Q}$. If $D=0$, log Fano $=$ Fano.

K-stability: definition

Recall a log Fano variety (X, D) consists of a normal projective variety X and an effective \mathbb{Q}-divisor D such that $-\left(K_{X}+D\right)$ is ample \mathbb{Q}-Cartier divisor.
For example, $\left(X=\mathbb{P}^{3}, c S_{4}\right)$ for $c \in(0,1) \cap \mathbb{Q}$. If $D=0$, log Fano $=$ Fano.

Definition (Fujita-Li)

A log Fano variety (X, D) is K-semistable if

$$
\mathrm{FL}_{(X, D)}(E):=A_{(X, D)}(E)-S_{(X, D)}(E) \geq 0
$$

for any prime divisor $E \subset Y \xrightarrow{\pi} X$. Here

$$
\begin{aligned}
& A_{(X, D)}(E):=1+\operatorname{ord}_{E}\left(K_{Y}-\pi^{*}\left(K_{X}+D\right)\right) \\
& S_{(X, D)}(E):=\frac{1}{\left(-K_{X}-D\right)^{n}} \int_{0}^{\infty} \operatorname{vol}\left(-\pi^{*}\left(K_{X}+D\right)-t E\right) d t
\end{aligned}
$$

K-stability: warming up example

Claim: $\mathbb{F}_{1} \cong B l_{p} \mathbb{P}^{2}$ is K -unstable.

K-stability: warming up example

Claim: $\mathbb{F}_{1} \cong B l_{p} \mathbb{P}^{2}$ is K -unstable.

- Let $E \subset B I_{p} \mathbb{P}^{2}$ be the exceptional divisor of blowups $\mu: B l_{p} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, then $A_{B l_{p} \mathbb{P}^{2}}(E)=1+0=1$.

K-stability: warming up example

Claim: $\mathbb{F}_{1} \cong B l_{p} \mathbb{P}^{2}$ is K -unstable.

- Let $E \subset B I_{p} \mathbb{P}^{2}$ be the exceptional divisor of blowups $\mu: B I_{p} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, then $A_{B_{p} \mathbb{P}^{2}}(E)=1+0=1$.
- Recall Zariski decomposition on normal projective surface X : let D be pesudo-effective \mathbb{Q}-divisor, then there is a unique decomposition $D=P+N$ where $P, N \geq 0 \mathbb{Q}$-divisors such that $P . N_{i}=0$ for each component of N, P is nef and the intersection matrix of components of N is negative or $N=0$. In particular, $\operatorname{vol}(D)=P^{2}$.

K-stability: warming up example

Claim: $\mathbb{F}_{1} \cong B l_{p} \mathbb{P}^{2}$ is K -unstable.

- Let $E \subset B l_{p} \mathbb{P}^{2}$ be the exceptional divisor of blowups $\mu: B l_{p} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, then $A_{B_{p} \mathbb{P}^{2}}(E)=1+0=1$.
- Recall Zariski decomposition on normal projective surface X : let D be pesudo-effective \mathbb{Q}-divisor, then there is a unique decomposition $D=P+N$ where $P, N \geq 0 \mathbb{Q}$-divisors such that $P . N_{i}=0$ for each component of N, P is nef and the intersection matrix of components of N is negative or $N=0$. In particular, $\operatorname{vol}(D)=P^{2}$.
- $-K_{B \mid \mathbb{P}^{2}}-t E=\mu^{*} \mathcal{O}(3)-(t+1) E$ has Zariski decomposition $P_{t}=\mu^{*} \mathcal{O}(3)-(t+1) E$ for $0 \leq t \leq 2$.

K-stability: warming up example

Claim: $\mathbb{F}_{1} \cong B l_{p} \mathbb{P}^{2}$ is K -unstable.

- Let $E \subset B l_{p} \mathbb{P}^{2}$ be the exceptional divisor of blowups $\mu: B l_{p} \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, then $A_{B_{p} \mathbb{P}^{2}}(E)=1+0=1$.
- Recall Zariski decomposition on normal projective surface X : let D be pesudo-effective \mathbb{Q}-divisor, then there is a unique decomposition $D=P+N$ where $P, N \geq 0 \mathbb{Q}$-divisors such that $P . N_{i}=0$ for each component of N, P is nef and the intersection matrix of components of N is negative or $N=0$. In particular, $\operatorname{vol}(D)=P^{2}$.
- $-K_{B l_{1} \mathbb{P}^{2}}-t E=\mu^{*} \mathcal{O}(3)-(t+1) E$ has Zariski decomposition $P_{t}=\mu^{*} \mathcal{O}(3)-(t+1) E$ for $0 \leq t \leq 2$. Then

$$
S_{B \mid \mathbb{P}^{2}}(E)=\frac{1}{8} \int_{0}^{2}\left(9-(t+1)^{2}\right) d t=\frac{7}{6}
$$

K-stability: how to check it ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

K-stability: how to check it ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

(1) Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1} K$-stable ?

K-stability: how to check it ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

(1) Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1} K$-stable ?
(2) (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable ?

K-stability: how to check it ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

(1) Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1} K$-stable ?
(2) (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable ?
(3) Calabi's Problem: Can we classify K-stable Fano 3 -folds ?

K-stability: how to check it ?

In general, how to check a given log Fano variety (X, D) is one of the challenging problem in K-stability theory.

Question

(1) Is each GIT stable cubic hypersurface $X \subset \mathbb{P}^{n+1} K$-stable ?
(2) (Donaldson) Is the moduli space M of vector bundles with fixed degree and determinant on a smooth curve K-stable ?
(3) Calabi's Problem: Can we classify K-stable Fano 3 -folds ?

At present, it is an active research direction to check K-stablity of log Fano varieties. The main two approaches

- Equivariant criterion and Abban-Zhuang's adjunction of stability threshold.
- Moduli method.
- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_{d} \subset \mathbb{P}^{n}$ of degree $d=n$ is K-stable.
- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_{d} \subset \mathbb{P}^{n}$ of degree $d=n$ is K-stable.
- Moduli methods:
(1) Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space $\left|\mathcal{O}_{\mathbb{P}^{n}}(3)\right| / / \mathrm{PGL}(n+1)$.
- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_{d} \subset \mathbb{P}^{n}$ of degree $d=n$ is K-stable.
- Moduli methods:
(1) Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space $\left|\mathcal{O}_{\mathbb{P}^{n}}(3)\right| / / \operatorname{PGL}(n+1)$.
(2) Ascher-DeVleming-Liu (2021) proved K-moduli space of $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, c C\right)$ is isomorphic to VGIT

$$
\mathbb{P E} / / L_{t} P G L(4), L_{t}=\mathcal{O}_{\mathbb{P} \mathcal{E}}(1)+p^{*} \mathcal{O}_{\mathbb{P}^{9}}(t)
$$

where $p: \mathbb{P E} \rightarrow\left|\mathcal{O}_{\mathbb{P}^{3}}(2)\right|=\mathbb{P}^{9}$ is a projective bundle parametrizing $(2,4)$ complete intersections in \mathbb{P}^{3}.

- Abban-Zhuang's adjunction methods: Abban-zhuang (2021) proved each smooth hypersurface $X_{d} \subset \mathbb{P}^{n}$ of degree $d=n$ is K-stable.
- Moduli methods:
(1) Liu-Xu (2019) and Liu(2021) proved that K-moduli space of cubic 3 or 4-folds is isomorphic to GIT space $\left|\mathcal{O}_{\mathbb{P}^{n}}(3)\right| / / \operatorname{PGL}(n+1)$.
(2) Ascher-DeVleming-Liu (2021) proved K-moduli space of $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, c C\right)$ is isomorphic to VGIT

$$
\mathbb{P E} / / L_{t} P G L(4), L_{t}=\mathcal{O}_{\mathbb{P} \mathcal{E}}(1)+p^{*} \mathcal{O}_{\mathbb{P}^{9}}(t)
$$

where $p: \mathbb{P E} \rightarrow\left|\mathcal{O}_{\mathbb{P}^{3}}(2)\right|=\mathbb{P}^{9}$ is a projective bundle parametrizing $(2,4)$ complete intersections in \mathbb{P}^{3}.
(3) Ascher-DeVleming-Liu (2022) gives full wall-crossing of K-moduli space for ($\mathbb{P}^{3}, c S_{4}$), based on the work of Laza-O'Grady's work on moduli space of quartic K3 surfaces.

Equivariant criterion

Theorem (Zhuang)
Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Equivariant criterion

Theorem (Zhuang)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Assume effective torus action $T=\left(\mathbb{G}_{m}\right)^{\operatorname{dim} X-1}$ on (X, D). Equivalently, $(\mathbb{C}(X))^{T}=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and there is $X \longrightarrow \mathbb{P}^{1}$.

Equivariant criterion

Theorem (Zhuang)

Let G be an algebraic group acting on (X, D). Then (X, D) is K-semistable if and on if (X, D) is G-equivariant K-semistable.

Assume effective torus action $T=\left(\mathbb{G}_{m}\right)^{\operatorname{dim} X-1}$ on (X, D). Equivalently, $(\mathbb{C}(X))^{T}=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and there is $X \longrightarrow \mathbb{P}^{1}$.

Theorem (Zhuang, Ilten-Suss)

Let (X, D) be a 2-dimensional log Fano with an effective \mathbb{G}_{m}-action λ. Then (X, D) is K-polystable if and only if the followings hold:
(1) $\mathrm{FL}_{(X, D)}(F)>0$ for all vertical λ-invariant prime divisors F on X;
(2) $\mathrm{FL}_{(X, D)}(F)=0$ for all horizontal λ-invariant prime divisors F on X;
(3) $\mathrm{FL}_{(X, D)}(v)=0$ for the valuation v induced by the 1-PS λ.

Example

$C=H_{x}+H_{y}+4 H_{z} \sim-2 K_{B I_{p} \mathbb{P}^{2}}$ where H_{x} the proper transform of the line $\{x=0\} \subset \mathbb{P}^{2}$.

Example

$C=H_{x}+H_{y}+4 H_{z} \sim-2 K_{B I_{p} \mathbb{P}^{2}}$ where H_{x} the proper transform of the line $\{x=0\} \subset \mathbb{P}^{2}$.

```
Proposition
\(\left(B I_{p} \mathbb{P}^{2}, c C\right)\) is K-semistable if and only if \(c=\frac{1}{14}\)
```


Example

$C=H_{x}+H_{y}+4 H_{z} \sim-2 K_{B l_{p} \mathbb{P}^{2}}$ where H_{x} the proper transform of the line $\{x=0\} \subset \mathbb{P}^{2}$.

Proposition

$\left(B I_{p} \mathbb{P}^{2}, c C\right)$ is K-semistable if and only if $c=\frac{1}{14}$

Proof.

- $A_{\left(B I_{p} \mathbb{P}^{2}, c C\right)}\left(H_{z}\right)=1-4 c \geq S_{\left(B I_{p} \mathbb{P}^{2}, C C\right)}\left(H_{z}\right)=\frac{5}{6}(1-2 c)$ implies $c \leq \frac{1}{14}$
- $A_{\left(B l_{p} \mathbb{P}^{2}, c C\right)}\left(H_{x}\right)=1-c \geq S_{\left(B I_{\rho} \mathbb{P}^{2}, c C\right)}\left(H_{x}\right)=\frac{13}{12}(1-2 c)$ implies $c \geq \frac{1}{14}$

Example

$C=H_{x}+H_{y}+4 H_{z} \sim-2 K_{B l_{p} \mathbb{P}^{2}}$ where H_{x} the proper transform of the line $\{x=0\} \subset \mathbb{P}^{2}$.

Proposition

$\left(B I_{p} \mathbb{P}^{2}, c C\right)$ is K-semistable if and only if $c=\frac{1}{14}$

Proof.

- $A_{\left(B l_{p} \mathbb{P}^{2}, c C\right)}\left(H_{z}\right)=1-4 c \geq S_{\left(B l_{p} \mathbb{P}^{2}, c C\right)}\left(H_{z}\right)=\frac{5}{6}(1-2 c)$ implies $c \leq \frac{1}{14}$
- $A_{\left(B l_{p} \mathbb{P}^{2}, c C\right)}\left(H_{x}\right)=1-c \geq S_{\left(B l_{p} \mathbb{P}^{2}, c C\right)}\left(H_{x}\right)=\frac{13}{12}(1-2 c)$ implies $c \geq \frac{1}{14}$
- The pair $\left(B l_{p} \mathbb{P}^{2}, C\right)$ is toric. Computation of barycenters will show $\left(B l_{p} \mathbb{P}^{2}, \frac{1}{14} C\right)$ is K -semistable. Or one can use a \mathbb{G}_{m}-equivariant criterion.

K-moduli spaces of log Fano varieties

- Due to many people's work (Jiang, Xu, Blum-Liu-Xu, Blum-Xu, Liu-Xu-Zhuang, Xu-Zhunag etc), there is a proper Artin stack of finite type $\mathfrak{P}^{K}(c)$ parametrizing K-semistable n-dimensional log Fano varieties $(X, c D)$ with fixed volume $v=\left(-K_{X}\right)^{n}$ where $D \sim-2 K_{X}$ and $c \in\left(0, \frac{1}{2}\right) \cap \mathbb{Q}$.

K-moduli spaces of log Fano varieties

- Due to many people's work (Jiang, Xu, Blum-Liu-Xu, Blum-Xu, Liu-Xu-Zhuang, Xu-Zhunag etc), there is a proper Artin stack of finite type $\mathfrak{P}^{K}(c)$ parametrizing K-semistable n-dimensional log Fano varieties $(X, c D)$ with fixed volume $v=\left(-K_{X}\right)^{n}$ where $D \sim-2 K_{X}$ and $c \in\left(0, \frac{1}{2}\right) \cap \mathbb{Q}$.
- Moreover, $\mathfrak{P}^{K}(c)$ has good moduli space

$$
\mathfrak{P}^{K}(c) \rightarrow \mathrm{P}^{K}(c)
$$

in the sense of J. Alper, which locally looks like

$$
[\operatorname{Spec}(R) / G] \rightarrow \operatorname{Spec}\left(R^{G}\right)
$$

where G is a reductive algebraic group.

K-moduli wall-crossing

Theorem (Ascher-DeVleming-Liu- 2019)

There are finitely many rational numbers (i.e., walls)
$0<w_{1}<\cdots<w_{m}<\frac{1}{2}$ such that

$$
\bar{P}(c)^{K} \cong \bar{P}\left(c^{\prime}\right)^{K} \quad \text { for any } w_{i}<c, c^{\prime}<w_{i+1} \text { and any } 1 \leq i \leq m-1
$$

Denote $\bar{P}^{K}\left(w_{i}, w_{i+1}\right):=\bar{P}^{K}(c)$ for some $c \in\left(w_{i}, w_{i+1}\right)$, then at each wall w_{i}, there is a flip (or divisorial contraction)

$$
\bar{P}^{K}\left(w_{i-1}, w_{i}\right) \longrightarrow \bar{P}^{K}\left(w_{i}\right) \longleftarrow \bar{P}^{K}\left(w_{i}, w_{i+1}\right)
$$

which fits into a local VGIT.

K-moduli of del pezzo pair of degree 8

- Let $\mathrm{P}^{K}(c)$ be the K -moduli space of 2-dimensional log Fano varieties with $\left(-K_{X}\right)^{2}=8$ and a general member is $\left(B I_{p} \mathbb{P}^{2}, c C\right)$.

K-moduli of del pezzo pair of degree 8

- Let $\mathrm{P}^{K}(c)$ be the K -moduli space of 2-dimensional log Fano varieties with $\left(-K_{X}\right)^{2}=8$ and a general member is $\left(B l_{p} \mathbb{P}^{2}, c C\right)$.
- $C \in\left|-2 K_{B l_{p} \mathbb{P}^{2}}\right|$ can be viewed as $C=\pi^{*} D-2 E$ where $D \subset \mathbb{P}^{2}$

$$
D=\left\{z^{4} f_{2}(x, y)+z^{3} f_{3}(x, y)+\cdots+f_{6}(x, y)=0\right\}
$$

K-moduli of del pezzo pair of degree 8

- Let $\mathrm{P}^{K}(c)$ be the K -moduli space of 2-dimensional log Fano varieties with $\left(-K_{X}\right)^{2}=8$ and a general member is $\left(B l_{p} \mathbb{P}^{2}, c C\right)$.
- $C \in\left|-2 K_{B l_{p} \mathbb{P}^{2}}\right|$ can be viewed as $C=\pi^{*} D-2 E$ where $D \subset \mathbb{P}^{2}$

$$
D=\left\{z^{4} f_{2}(x, y)+z^{3} f_{3}(x, y)+\cdots+f_{6}(x, y)=0\right\}
$$

Assume $f_{2}(x, y)$ has rank 2 , then curve D has the form

$$
a z^{4} x y+z^{3} \widetilde{f}_{3}(x, y)+z^{2} f_{4}(x, y)+z f_{5}(x, y)+f_{6}(x, y)=0
$$

Let $\mathbb{P} V \cong \mathbb{P}^{20}$ be the parameter space of such D and there is $T=\left(\mathbb{C}^{*}\right)^{2}$-action on $\mathbb{P} V$ and define GIT space $\mathbb{P} V / / T$.

Moduli space

- Let $X=X_{C} \rightarrow B l_{p} \mathbb{P}^{2}$ be the double cover branched along smooth curve $C \sim-2 K_{B I_{p} \mathbb{P}^{2}}$, then X is a K 3 surface with anti-symplectic involution $\tau: X \rightarrow X$. Then $N S(X)$ contains

$$
\left(\begin{array}{cc}
0 & 2 \\
2 & -2
\end{array}\right)
$$

Its period domain \mathcal{D} is determined transcendental lattice $U^{2} \oplus E_{8} \oplus E_{7} \oplus A_{1}$.

Moduli space

- Let $X=X_{C} \rightarrow B l_{p} \mathbb{P}^{2}$ be the double cover branched along smooth curve $C \sim-2 K_{B l_{p} \mathbb{P}^{2}}$, then X is a K 3 surface with anti-symplectic involution $\tau: X \rightarrow X$. Then $N S(X)$ contains

$$
\left(\begin{array}{cc}
0 & 2 \\
2 & -2
\end{array}\right)
$$

Its period domain \mathcal{D} is determined transcendental lattice $U^{2} \oplus E_{8} \oplus E_{7} \oplus A_{1}$.

- Via a period point of K3 surfaces, there is biratonal map

$$
\mathrm{P}^{K}(c) \cdots \mathcal{F}=\Gamma \backslash \mathcal{D},\left[\left(B I_{p} \mathbb{P}^{2}, C\right)\right] \mapsto H^{2,0}\left(S_{C}\right) \quad \bmod \Gamma
$$

if $\mathrm{P}^{K}(c)$ is nonempty.

Two divisors \mathcal{F}

- Hyperelliptic divisor H_{h} on $\mathcal{F}: X \xrightarrow{2: 1} B I_{p} \mathbb{P}^{2}$ branched along a general curve $C \in\left|-2 K_{B l_{\rho} \mathbb{P}^{2}}\right|$ tangent the (-1)-curve E.

$$
N S(X)=\left(\begin{array}{c|ccc}
& L & E_{1} & E_{2} \\
\hline L & 2 & 0 & 0 \\
E_{1} & 0 & -2 & 1 \\
E_{2} & 0 & 1 & -2
\end{array}\right)
$$

Two divisors \mathcal{F}

- Hyperelliptic divisor H_{h} on $\mathcal{F}: X \xrightarrow{2: 1} B I_{p} \mathbb{P}^{2}$ branched along a general curve $C \in\left|-2 K_{B l_{\rho} \mathbb{P}^{2}}\right|$ tangent the (-1)-curve E.

$$
N S(X)=\left(\begin{array}{c|ccc}
& L & E_{1} & E_{2} \\
\hline L & 2 & 0 & 0 \\
E_{1} & 0 & -2 & 1 \\
E_{2} & 0 & 1 & -2
\end{array}\right)
$$

- Unigonal divisor H_{u} on $\left.\mathcal{F}: X \xrightarrow{2: 1} B I_{p} \widetilde{\mathbb{P}(1,1}, 4\right) \rightarrow B l_{p} \mathbb{P}(1,1,4)$.

$$
N S(X)=\left(\begin{array}{c|ccc}
& E^{\prime} & F^{\prime} & H_{y}^{\prime} \\
\hline E^{\prime} & -2 & 0 & 2 \\
F^{\prime} & 0 & -2 & 1 \\
H_{y}^{\prime} & 2 & 1 & -2
\end{array}\right)
$$

Main results 1

Theorem A (Pan-Si-Wu,2023)

(1) The walls for K-moduli space $\mathrm{P}^{K}(c)$ are

$$
\begin{aligned}
& W_{h}=\left\{\frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7}\right\} \\
& W_{u}=\left\{\frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118}\right\}
\end{aligned}
$$

Main results 1

Theorem A (Pan-Si-Wu,2023)

(1) The walls for K-moduli space $\mathrm{P}^{K}(c)$ are

$$
\begin{aligned}
& W_{h}=\left\{\frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7}\right\} \\
& W_{u}=\left\{\frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118}\right\}
\end{aligned}
$$

(2) If $c \in\left(0, \frac{1}{14}\right), \mathrm{P}^{K}(c)$ is empty. If $c \in\left(\frac{1}{14}, \frac{5}{58}\right), \mathrm{P}^{K}(c) \cong \mathbb{P} V / / T$.

Main results 1

Theorem A (Pan-Si-Wu,2023)

(1) The walls for K-moduli space $\mathrm{P}^{K}(c)$ are

$$
\begin{aligned}
& W_{h}=\left\{\frac{1}{14}, \frac{5}{58}, \frac{1}{10}, \frac{7}{62}, \frac{1}{8}, \frac{5}{34}, \frac{1}{6}, \frac{7}{38}, \frac{1}{5}, \frac{5}{22}, \frac{2}{7}\right\} \\
& W_{u}=\left\{\frac{29}{106}, \frac{31}{110}, \frac{2}{7}, \frac{35}{118}\right\}
\end{aligned}
$$

(2) If $c \in\left(0, \frac{1}{14}\right), \mathrm{P}^{K}(c)$ is empty. If $c \in\left(\frac{1}{14}, \frac{5}{58}\right), \mathrm{P}^{K}(c) \cong \mathbb{P} V / / T$.
(3) There are two divisorial contraction morphisms $\mathrm{P}^{K}(w+\epsilon) \rightarrow \mathrm{P}^{K}(w)$ at $w=\frac{5}{58}$ and $w=\frac{29}{106}$. The exceptional divisors $E_{w}^{+} \subset \mathrm{P}^{K}(w+\epsilon)$ is birational to hyperelliptic divisor H_{h} (resp. unigonal divisor H_{u}).

Table for K-wall

wall	curve B on \mathbb{P}^{2}	weight	curve singularity at p
$\frac{1}{14}$	$x^{4} z y=0$	$(1,0,0)$	A_{1}
$\frac{5}{58}$	$x^{4} z^{2}+x^{3} y^{3}=0$	$(0,2,3)$	A_{2}
$\frac{1}{10}$	$x^{4} z^{2}+x^{3} z y^{2}+a \cdot x^{2} y^{4}=0$	$(0,1,2)$	A_{3}
$\frac{1}{62}$	$x^{4} z^{2}+x y^{5}=0$	$(0,2,5)$	A_{4}
$\frac{1}{8}$	$x^{4} z^{2}+x^{2} z y^{3}+a \cdot y^{6}=0$,	$(0,1,3)$	A_{5} tangent to L_{z}
	$x^{3} f_{3}(z, y)=0$	$(0,1,1)$	D_{4}
$\frac{5}{34}$	$x^{4} z^{2}+x z y^{4}=0$	$(0,1,4)$	A_{7} with a line
	$x^{3} z^{2} y+x^{2} y^{4}=0$	$(0,2,3)$	D_{5}
$\frac{1}{6}$	$x^{4} z^{2}+z y^{5}=0$	$(0,1,5)$	A_{9} with a line
	$x^{3} z^{2} y+x^{2} z y^{3}+a \cdot x y^{5}=0$	$(0,1,2)$	D_{6}

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_{1}=B \|_{[1,0,0]} \mathbb{P}^{2}$

Table for K-walls

wall	curve B on \mathbb{P}^{2}	weight	curve singularity at p
$\frac{7}{38}$	$x^{3} z^{2} y+y^{6}=0$	$(0,2,5)$	D_{7} tangent to L_{z}
	$x^{3} z^{3}+x^{2} y^{4}=0$	$(0,3,4)$	E_{6}
$\frac{1}{5}$	$x^{3} z^{2} y+x z y^{4}=0$	$(0,1,3)$	D_{8} with L_{z}
$\frac{5}{22}$	$x^{3} z^{2} y+z y^{5}=0$	$(0,1,4)$	D_{10} with L_{z}
	$x^{3} z^{3}+x^{2} z y^{3}=0$	$(0,2,3)$	E_{7}
$\frac{2}{7}$	$x^{3} z^{3}+x y^{5}=0$	$(0,3,5)$	E_{8}

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_{1}=B l_{[1,0,0]} \mathbb{P}^{2}$

Table for K-walls

wall	curve B on \mathbb{P}^{2}	weight	curve singularity at p
$\frac{7}{38}$	$x^{3} z^{2} y+y^{6}=0$	$(0,2,5)$	D_{7} tangent to L_{z}
	$x^{3} z^{3}+x^{2} y^{4}=0$	$(0,3,4)$	E_{6}
$\frac{1}{5}$	$x^{3} z^{2} y+x z y^{4}=0$	$(0,1,3)$	D_{8} with L_{z}
$\frac{5}{22}$	$x^{3} z^{2} y+z y^{5}=0$	$(0,1,4)$	D_{10} with L_{z}
	$x^{3} z^{3}+x^{2} z y^{3}=0$	$(0,2,3)$	E_{7}
$\frac{2}{7}$	$x^{3} z^{3}+x y^{5}=0$	$(0,3,5)$	E_{8}

Table: K-moduli walls from Gorenstein del Pezzo $\mathbb{F}_{1}=B l_{[1,0,0]} \mathbb{P}^{2}$

wall	curve B on $\mathbb{P}(1,1,4)$	weight	(a, b, m)
$\frac{29}{106}$	$z^{3}+z^{2} x^{4}=0$	$(1,0,4)$	$(0,1,0)$
$\frac{31}{110}$	$z^{3}+z y x^{7}=0$	$(2,0,7)$	$(1,1,1)$
$\frac{2}{7}$	$z^{3}+y^{2} x^{10}=0$	$(3,0,10)$	$(2,1,2)$
$\frac{35}{118}$	$z^{3}+z y^{2} x^{6}+y^{3} x^{9}=0$	$(1,0,3)$	$(1,0,1)$

Table: K-moduli walls from index 2 del Pezzo $B l_{[1,0,0]} \mathbb{P}(1,1,4)$

Main results 2

Define the Hasset-Keel-Looijenga (HKL) model for \mathcal{F}

$$
\mathcal{F}(s):=\operatorname{Proj}\left(\bigoplus_{m} H^{0}\left(\mathcal{F}, m\left(\lambda+s H_{h}+25 s H_{u}\right)\right)\right.
$$

By Baily-Borel's work, $\mathcal{F}(0)=\mathcal{F}^{*}$ is Baily-Borel's compactification for \mathcal{F} with boundaries $\mathcal{F}^{*}-\mathcal{F}$ consisting of modular curves.

Main results 2

Define the Hasset-Keel-Looijenga (HKL) model for \mathcal{F}

$$
\mathcal{F}(s):=\operatorname{Proj}\left(\bigoplus_{m} H^{0}\left(\mathcal{F}, m\left(\lambda+s H_{h}+25 s H_{u}\right)\right)\right.
$$

By Baily-Borel's work, $\mathcal{F}(0)=\mathcal{F}^{*}$ is Baily-Borel's compactification for \mathcal{F} with boundaries $\mathcal{F}^{*}-\mathcal{F}$ consisting of modular curves.

Theorem B (Pan-Si-Wu,2023)

There is natural isomorphism $\mathrm{P}^{K}(c) \cong \mathcal{F}(s)$ induced by the period map under the transformation

$$
s=s(c)=\frac{1-2 c}{56 c-4}
$$

where $\frac{1}{14}<c<\frac{1}{2}$. In particular, $\mathrm{P}^{K}(c)$ will interpolates the GIT space $\mathbb{P} V / / T$ and Baily-Borel compactification \mathcal{F}^{*}. The walls are $w=\frac{1}{n}$ and

$$
n \in\{1,2,3,4,6,8,10,12,16,25,27,28,31\}
$$

Sketch of proof of Theorem A

- Step1: To determine K-semistable degeneration. By using some classification results of index ≤ 2 del pezzo surface and normalised volume comparison due to Chi Li, Li-Liu, we can show each $(X, c C) \in \mathrm{P}^{K}(c)$, then X is either $B l_{p} \mathbb{P}^{2}$ or $B l_{p} \mathbb{P}(1,1,4)$.

Sketch of proof of Theorem A

- Step1: To determine K-semistable degeneration. By using some classification results of index ≤ 2 del pezzo surface and normalised volume comparison due to $\mathrm{Chi} \mathrm{Li}, \mathrm{Li}-\mathrm{Liu}$, we can show each $(X, c C) \in \mathrm{P}^{K}(c)$, then X is either $B l_{p} \mathbb{P}^{2}$ or $B l_{p} \mathbb{P}(1,1,4)$.
- Step2: Local VGIT structure of K-moduli implies if $(X, c C) \in P^{K}(w)$ admits 1-PS λ and thus $\operatorname{FL}\left(E_{\lambda}\right)=0$ where E_{λ} is exceptional divisor of certain weighted blowup determined by λ. e.g, $X=\left.B\right|_{[1,0,0]} \mathbb{P}^{2}$ and for some $\lambda=\left[0, m_{1}, m_{2}\right]$ on X,

$$
A_{(X, c C)}\left(E_{\lambda}\right)=a+b-m c, \quad S_{(X, c C)}\left(E_{\lambda}\right)=\frac{14 a+13 b}{12}(1-2 c)
$$

Then $A_{(X, c C)}\left(E_{\lambda}\right)=S_{(X, c C)}\left(E_{\lambda}\right)$ will all potential walls.

- Step3: To determine the 1st walls and then keep track of wall crossing at all centers for each walls.
- Step3: To determine the 1st walls and then keep track of wall crossing at all centers for each walls.
Following the arguments of Liu- Xu , show for $\frac{1}{14}<c<\frac{1}{14}+\epsilon$ and any K-degeneration $\left(X_{0}, c C_{0}\right)$ of $\left(B l_{p} \mathbb{P}^{2}, c C\right), X_{0}$ is still $B I_{p} \mathbb{P}^{2}$, then

$$
\mathfrak{P}^{K} \hookrightarrow \mathbb{P} V
$$

Then explicit wall-crossing are followed by analysis of local VGIT at each wall $w \in W_{u} \cup W_{h}$.

Some remarks:

- The explicit wall-crossing from $\mathbb{P} V / / T$ to \mathcal{F}^{*} will be useful to calculate the topological invariants and intersection theory on the moduli space \mathcal{F}.

Some remarks:

- The explicit wall-crossing from $\mathbb{P} V / / T$ to \mathcal{F}^{*} will be useful to calculate the topological invariants and intersection theory on the moduli space \mathcal{F}.
- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).

Some remarks:

- The explicit wall-crossing from $\mathbb{P V} / / T$ to \mathcal{F}^{*} will be useful to calculate the topological invariants and intersection theory on the moduli space \mathcal{F}.
- For higher dimensional log Fano pairs, to find walls of their K-moduli seems much harder than dimension 2. The arithmetic stratifications should be powerful to predict walls for K-moduli of log Fanos related to K3 surfaces (even irreducible holomorphic symplectic varieties).
- It should be interesting to look at the behavior of $c>\frac{1}{2}$ and $c=\frac{1}{2}$. For $c>\frac{1}{2}$, by Alexeev-Engel and Alexeev-Engel-Han's work, the KSBA moduli space compactifying pairs $\left(B l_{p} \mathbb{P}^{2}, c C\right)$ and their slc degeneration has a natural normalization- Toroidal compactification of \mathcal{F}.
For $c=\frac{1}{2}$, it is expected to have a moduli theory for $\log C Y$ to connect wall crossing from K-moduli to KSBA moduli.

Thank you for attention!

